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I. I NTRODUCTION

The linear bicharacteristic scheme (LBS) was originally developed to improve unsteady solutions
in computational acoustics and aeroacoustics [1]-[7]. The LBS has previously been extended to
treat lossy materials for one-dimensional problems [8]. It is a classical leapfrog algorithm, but is
combined with upwind bias in the spatial derivatives. This approach preserves the time-reversibility
of the leapfrog algorithm, which results in no dissipation, and it permits more flexibility by the ability
to adopt a characteristic based method. The use of characteristic variables allows the LBS to include
the Perfectly Matched Layer boundary condition with no added storage or complexity. The LBS
offers a central storage approach with lower dispersion than the Yee algorithm, plus it generalizes
much easier to nonuniform grids. It has previously been applied to two and three-dimensional free-
space electromagnetic propagation and scattering problems [3], [6], [7]. This paper extends the LBS
to the two-dimensional case. Results are presented for point source radiation problems, and the
FDTD algorithm is chosen as a convenient reference for comparison.

II. T WO-DIMENSIONAL IMPLEMENTATION

Maxwell’s equations in bicharacteristic form for linear, homogeneous and lossy media in the two-
dimensional TM case (taking@=@z = 0) are
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wherec = 1=
p
��, and the electric and magnetic conductivities are given by� and��, respectively.

The characteristic variables are defined asP = Dz � 1

c Hy, Q = Dz +
1

c Hy, R = Dz +
1

c Hx,
S = Dz � 1

c Hx to represent the�x and�y propagating solutions, respectively. Equations (1)–(2)
can be rewritten more concisely as
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wherea = �=� + ��=� andb = �=� � ��=�. To develop the discretized algorithm for a two-
dimensional system, the stencils of Figure 1 are proposed for the 2D LBS. The upwind bias nature
of these stencils is clearly evident. We discretize time and space ast = n�t, x = i�x, y = j�y,
and we also know thatHx = c (R � S)=2 andHy = c (Q � P )=2. Using the stencils shown in
Figure 1, the resulting finite difference equations for (3)–(6) are
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Fig. 1. Two-dimensional upwind leapfrog computational stencils for (a)+x; (b) �x; (c) +y and (d)�y propagating
characteristics.
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wherePn
i;j denotes the value forP at grid point(i; j) and time leveln and�x = c�t=�x, �y =

c�t=�y are thex and y Courant numbers. Note that the differences are taken with respect to
the cell center, i.e. the coordinate(i; j) is located at the center of the cell. The procedure for the
TE polarization is similar, except the characteristic variables are defined byP = Dy + 1

c Hz,
Q = Dy � 1

c Hz , R = Dx � 1

c Hz, andS = Dx + 1

c Hz. The update equations are almost
identical, differing only in signs of the cross derivative terms. The 2D LBS includes the PML
boundary condition in its formulation without any additional storage or complexity. Starting with
the bicharacteristic Maxwell’s equations in free space [(1)-(2) with� = �� = 0], it can be shown
using a complex coordinate transformation PML approach that the resulting equations are identical
to (3)-(6). A full derivation of these equations is outlined in [9]. Thus, the LBS automatically
implements the PML when combined with the standard PML conductivity profiles: linear, quadratic
or geometric [10].

III. F OURIER ANALYSIS

0.01

0.1

1

10

100

0 5 10 15 20 25 30 35 40 45 50%
 
e
r
r
o
r
 
i
n
 
p
h
a
s
e
 
s
p
e
e
d

Grid Resolution

FDTD
LBS

Fig. 2. Phase speed error versus grid resolutionN
for FDTD method and LBS with� = 0:4 and
� = 45Æ.

Various Fourier analyses of the two-dimensional LBS
have already been completed [5], [6], [7]; therefore,
only the important results and conclusions from these
previous analyses will be reviewed in this paper. Most
of the information presented is summarized from [5].
The stability condition for the 2D LBS is�x; �y �
1=2. Although this stability limit is more restrictive
than the standard 2D FDTD method, it is not partic-
ularly troublesome because many FDTD simulations
use a Courant number of 1/2 for improved accuracy.
For a Courant number� = 0:4 and propagation angle
of 45Æ, the numerical dispersion decreases smoothly
with increasing grid resolution as shown in Figure 2.
From this figure, we see that the LBS has approxi-
mately 1/2 the phase error as FDTD. Generally, the
dispersion error for the LBS grows as� ! 0. When� = 1=2, numerical dispersion is zero along the



coordinate axes and is maximum at45Æ as shown in Figure 3 for a grid resolutionN = 10 cells/�.
The optimal Courant number for the LBS is 1/2. This Courant number offers much lower dispersion
for most all propagation angles except those near a45Æ vector. For� < 1=2, numerical dispersion
decreases as both grid resolution and Courant number are increased. Typically, LBS dispersion is at
least 1/2 that of FDTD, and can be much lower in many instances.

IV. N UMERICAL RESULTS
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Fig. 3. Phase speed error versus grid propagation
angle� for FDTD method and LBS with� =

1=2 andN = 10.

To demonstrate the 2D LBS, we consider various
canonical problems. First, we inject an incoming plane
wave on the outer boundaries using the LBS, and let the
algorithm propagate the signal through the grid using a
total field formulation. This is done by specifying the
incoming characteristic variable (P , Q, R or S) on the
appropriate outer boundary. For example, on the leftx
boundary,P is specified for allj coordinates ati = 1.
We use a 71� 71 free space grid, with a�x = �y = 1
cm, which has a time step of�t = 16:67 ps and
the incident wave is a Gaussian pulse with FWHM
of 35 time steps (or0:58 ns). We specify the inci-
dence angle as180Æ, and the electric field after 160
time steps is shown in Figure 4. Similar results can
be obtained with other incidence angles. It is clear
that the LBS easily allows specification of incoming plane waves in its fundamental algorithm.
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Fig. 4. Propagating plane wave injected on outer grid boundaries at180Æ inci-
dence.

Next we move on to radia-
tion from a point source in free
space. This problem demon-
strates that the algorithm can
easily treat spherical waves and
it also tests the PML bound-
ary condition. Two concurrent
grids are used in this problem,
each having a cell size of 1 mm.
The first is a small test grid of
size 101 x 101 cells with an ad-
ditional 10 cell PML boundary
condition. This grid is centered
within a large 501� 501 grid,
and the point source is located at

the center of both computational grids. The time step is 3.3 ps, and an electric field point source
is located at the center of both grids and the total number of time steps is truncated at 512, to al-
low no reflection from the large grid outer boundaries to reach the field sampling points. The inner
grid is terminated with PML for both FDTD and the LBS, and the large grid is terminated with a
second-order Liao boundary condition for FDTD and a characteristic based boundary condition for
the LBS. The electric field is sampled at the same two locations in both grids, which are located 30
cells in the+x direction from the point source and then�30 cells in they direction in the smaller
grid. The point source is located in the smaller grid at grid point(61; 61) and the two sample points
are(61; 91) and(61; 31). Figure 5 shows the electric field at the upper sample point(61; 91) in
the smaller test grid (with PML) for point source radiation in free space. Note the agreement is
excellent, and there are no reflections from the outer boundary due to the PML boundary condition.
Similar results were observed at the lower sample point(61; 31). Next, we simulate the same point
source radiation problem, but turn off the PML boundary condition and instead use the character-
istic boundary condition. Figure 6 shows the results using for the LBS with and without the PML
boundary condition. Note the reflections from the outer boundary are clearly visible for the no PML
case.



V. CONCLUSIONS

This paper has extended the Linear Bicharacteristic Scheme for computational electromagnetics
to the two-dimensional case. It was demonstrated that the LBS has several distinct advantages over
conventional FDTD algorithms. First, the LBS typically has much lower dispersion than the FDTD
method. The LBS can also be made to have zero dispersion error in certain instances. Second,
the LBS provides the PML boundary condition as part of the fundamental scheme, and does not
require additional storage or computational complexity for the PML. Finally, the upwind biasing
provides a more flexible generalization to unstructured grids, and for subgrid implementations. The
two-dimensional LBS can easily treat dielectric and magnetic materials, and a dielectric surface
boundary condition was implemented in a separate report [9]. However, validation of the 2D LBS
for dielectric and magnetic materials was not explored in the present work and should be the subject
of future articles. The LBS appears to be a very promising alternative to a conventional FDTD
algorithm for many applications. Higher order schemes are available for the 2D case [5]. Additional
research and development is required to explore the full potential of this new technique.
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Figure 5: Sampled electric field due to radiation from
a point source in free space.
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Figure 6: Sampled electric field due to radiation from
a point source in free space for LBS with and without
PML boundary condition.


